week-8

PHOTO EMBED

Sun Jun 01 2025 14:43:00 GMT+0000 (Coordinated Universal Time)

Saved by @nani ##python

week-8:
# Import necessary libraries
from sklearn.datasets import load_iris
from sklearn.model_selection import train_test_split
from sklearn.linear_model import LogisticRegression
from sklearn.metrics import accuracy_score, classification_report

# Load a sample dataset (Iris)
data = load_iris()
X = data.data        # Features
y = data.target      # Labels

# For binary classification, select only two classes (e.g., class 0 and 1)
X = X[y != 2]
y = y[y != 2]

# Split into training and testing data
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)

# Initialize the Logistic Regression model
model = LogisticRegression()

# Train the model
model.fit(X_train, y_train)

# Predict on the test data
y_pred = model.predict(X_test)

# Evaluate the model
print("Accuracy:", accuracy_score(y_test, y_pred))
print("Classification Report:\n", classification_report(y_test, y_pred))	

output:
Accuracy: 1.0
Classification Report:
            precision    recall  f1-score   support   
0       1.00      1.00      1.00        12
           1       1.00      1.00      1.00         8

    accuracy                           1.00        20
   macro avg       1.00      1.00      1.00        20
weighted avg       1.00      1.00      1.00        20
content_copyCOPY