########################################################################
# TODO: "Implement the forward function for the Resnet specified" #
# above. HINT: You might need to create a helper class to #
# define a Resnet block and then use that block here to create #
# the resnet layers i.e. conv2_x, conv3_x, conv4_x and conv5_x #
########################################################################
# *****START OF YOUR CODE (DO NOT DELETE/MODIFY THIS LINE)*****
class ResNet(nn.Module):
def __init__(self):
super(ResNet, self).__init__()
in_channels = 64
out_channels = 64
stride = 1
self.conv1 = nn.Conv2d(3, 64, kernel_size=7, stride=2, padding=3, bias=False)
self.bn1 = nn.BatchNorm2d(64)
nn.ReLU()
self.maxpool = nn.MaxPool2d(kernel_size = 3, stride = 2, padding = 1)
pass
def forward(self):
pass
########################################################################
# END OF YOUR CODE #
########################################################################
Preview:
downloadDownload PNG
downloadDownload JPEG
downloadDownload SVG
Tip: You can change the style, width & colours of the snippet with the inspect tool before clicking Download!
Click to optimize width for Twitter